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1. INTRODUCTION

Christaller (1933) postulated a regular hexagonal lattice
as his model for the distribution of towns over a homogeneous
area. This is known as Central Place Theory. This is con-

trasted against théthypothesis that the spatial pattern of

M. }
ﬁ
. G’
PY*

0BG FILE co

towns in the area is random. A survey on this and related

topics is given by Cliff & Ord (1975) as well as an extensive

AD No.

bibliography. See also Berry & Pred (1961) and Ripley (1977).
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In an ideal situation Central Place Theory would predict a
pattern as given in Fig. 1 for 11 central places. As shown,
the region can be covered by hexagons of the same size. We

will require the following definitions.

y Key words: Central Places, Delaunay Triangle, Dirichlet Cell],
Miles density, Random pattern, von Mises Distribution.
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FIG. 1

Spatial pattern under Central Place Theory
with 11 towns (° denotes a town)

(1) Dirichlet Cells (Thiessen Polygons)

Let xl, §2,...,§n be the co-ordinates in R2 of n

central places. The ith Dirichlet cell, ﬂ(xi), is defined

such that for all x € H(xi),

A

Hf-:jill ||§-§j|| Wi R

The boundary of the cell defines the corresponding Thiessen

Polygon and these cells or polygons form a non-overlapping

covering of the plane.

(ii) Delaunay Triangles

These are formed by connecting those points whose Theissen




polygons have a common side. Provided that 4 or more Dirichlet

cells do not meet at any one point, the Delaunay triangulation will
also form a non-overlapping covering of the plane. For 4 cells
to have a common vertex, the 4 centres would have to lie at the
vertices of a square or rectangle and since we are in continuous
space, this probability can be neglected.

As a numerical example, we examine the data of Gaile & Burt
(1977, +«npublished). They consider a map of 44 Central Places in
6 counties in Iowa, namely Unwin, Ringgold, Clarke, Decatur, Lucas
and Wayne Counties. Thiessen polygons were computed and the interior
angles, Q. a., a3, of the 63 resulting Delaunay triangles were

2

; # + = "y i v e
obtained. Of course o+ a,+ a;= 180°. Define a ,,, & ). @ 3,

Table ives o and o .
9 (1) (2)

so that a(l)s a(z)s a(3).
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TABLE I ]
Angles “(l) and “(2) for the 63 Delaunay triangles formed from |
(0]
44 Cent P . < :
the cntral Places in Iowa, “(l) 11(2) "(3)' “(I)' ((2)m(:” 180
Yeur o ey Tai - "oy Hegy v % eny
78 82 102 108 82 100
62 136 54 00 52 58
06 106 38 120 GR 76
56 78 38 128 72 110
| 88 100 94 110 88 108
: 104 104 52 86 24 100
66 112 52 74 72 118
88 134 88 92 34 116
: 4z 132 86 134 52 111
| 40 82 62 134 58 78
| 36 R 38 122 110 118 .
3 42 80 36 108 78 132
f 62 124 84 106 62 98
. 62 140 70 136 34 120 ;
: 78 80 110 124 14 110 ;
82 118 90 108 48 96
106 122 92 120 80 120
92 112 66 98 96 112 :
86 114 40 158 62 118
100 122 44 86 112 116
; 60 112 92 114 96 120
| |
E
]
3




2. RANDOMNESS HYPOTHESIS AND MILES' DENSITY

2.1 Miles' PpPesult

When Central Place Theory does not hold, the Thicssen polygons
become irregular and the Delaunay triangles follow a more random
pattern. The one procedure 1is then to generate the points in the
plane by the homogeneous Poisson process. This process has been
studied in Miles (1970) with the following results.

Let X be a '‘nice' domain in R? e.g. the interior of a circle.

Let g > 0 be a real number and let X(gq) be the circle of radius (.
Consider a Poisson process P in R%2 of constant parameter p,

~

and for those points lying in X(q) consider the associated Delaunay

triangulation. A triangle with vertices X)» X,, X3 can be re-
parameterised in terms of X0 R, el, 62, 93, where R 1is the

circumradius and ei is the angle formed between the horizontal
through the centre of the circumcircle, and the line joining X,

to the centre.

Therefore, in the notation of Section 1,

sina, = |51n%(82— Gl)l, sina, = |51n%(93- 62)|. aj, @, € (0,m).

Let R and (al,az) be asymptotically independent with

g(R) = 2(np)2R3 exp (-npRz), R>0, p >0, (2.1)
f(a,,a.) = 8—- sin &, sin a_ sin (a,+ a.) a.> 0, o >0, 0.+ a<n (2.2)
1*72"  3m 1 2 Hde ke s e rrtoe il Wilke AL SINL L.

and let B C© R3 be an open set in (R, Q az) space. Miles' result

1'

can be stated as
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Number of DA's in X(g) such that (R,a,,a.) ¢ B

fEE 2

Number of DA's in X(q)

AeSe.
A f g(R)f(a;,a,)drda,da
B

2
where DA stands for a Delaunay triangle.
The convergence is almost sure with respect to the Poisson process
E as q * ® . In practice we have a set of data with say No points
in a region X, and we would like to know if those points could be
the realisation of a Poisson process and hence if Miles' results are
applicable to the finite situation. It seems plausible that a process
closer to the data would be obtained, if a priori, we condition on
there being N = No points in the region. Of course now the process
is no longer Poisson and it is natural to ask if the asymptotics of
Miles are valid for this conditioned process.

For N 2 No' define a conditioned Poisson process in X(q) of
N points. As N varies these processes are defined on different
probability spaces, so it is not possible to state "almost sure' re-

sults, however, we still have convergence in distribution to (2.3).

2.2 Verification

L R

Miles' result says nothing about the distribution of (al1 2i

i=1l,...,n. We hypothesize that the (ali'azi) are independently

distributed as f(al,az) given by (2.2) for large n. To investi-

gate this density we conducted a simulation of 44 points uniformly

2e3)
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distributed over the rectangle with sides in the ratio 1:2, which

gave rise to 64 Delaunay triangles. These numerical values corres-
pond as closely as possible to the Iowa data. Thiesscen polygons woere
constructed using the program of Green and Sibson (1977). We will

examine this hypothesis in §2.2.1 and 82.2.2 through the density function of

A, which is twice the area, and through the marginal density of the
minimal angles.
2.2.1. Vverification through Area

For reasons given later, we look into the behaviour of the
distribution of areas of Delaunay triangles of unit radius. The

areas are given by

i ; At = - ”
L[sin 20 + sin 2a,- sin 2(a,+ az)] ka, a,> 0, o> 0, at a<m {2.4)

1

The distribution function of A , H(A), from f(al,az) given by

(2.2), is found to be

™
na) = m™' [ (s(e)- o} sin 20 da
a=0
1 "
-2(3m) " f sin o sin s(a) da,
a=0
where

2 (2.5)

sin ZG—A) }
2 sin a’’°

s(a) cos_l{max(—l,

We now test the hypothesis,

g Al....,An are independent observations from H(A) given by




g

There will be some form of dependence on the A's, but it has

to be seen whether or not this is negligible. Table IT shows a com-
parison of the distribution of A for the simulated Poisson process
of 44 points with the simulated distribution of A wunder Miles den-

sity, equation (2.2).

TABLE II

The distribution of A(=2xArea) for a simulated Poisson procoss of
44 points giving rise to 64 Delaunay triangles (obscrvel) and for
the simulated values from the Miles distribution given by (2.95),

calculated from 10,000 simulations

Range Observed Expected
of A frequency frequency
0.0 -0.2 1 L)
0.2 -0.4 1 2.25} 6.50
0.4 -0.6 0 3.14
0.6 -0.8 14 3.67] 8.04
0.8 -1.0 8 4.37
1.0 -1.2 7 5.10
1.2 -1.4 7 5.16
1.4 -1.6 9 5.38
1.6 -1.8 8 6.23
1.8 -2.0 3 6.30
2.0 -2.2 2 6.76 i
2.2 -2.4 7 7.00 -
2.4 -2.6 7 7.44

Using the xz goodness of fit criterion, it is found that x2= 14.49.
The 5% value of X; = 16.92 and hence we accept the null hypothesis.

Further, it is found that for the simulated Poisson process the mean

and the variance are A = 1+53, Si = ,3665. It can be shown




from (2.2) that

]

W
N |

2
: u = B(A) = -Tzl , 02 = var (A) - '—'4— . (2.6)

Under the null hypothesis for large n, A~ N(u,oz/n). In fact

c—lnl5 IX-u, = .48 and consequently we again accept the null
hypothesis.

2.2.2. Verification through Marginal

consider the order statistics a such that

) ek 1 ey

< < Qa da a + Q + = 1. It can e ily be shown
Sy et Ny 0% e o B e

that the marginal density of a the minimum angle, becomes

s

= (2/m)[(m - 3a ) sin 2a ..+ cos 2a,,, ~ cos 4a 1

£ (1) (1) (1) (1)

a(l))

m
0 < a(1)< 5 - (22)

We now test the hypothesis,

H are independent observations from (2.7).

H ....,0,
o * % (1)n
Using the xz goodness of fit criterion, x2= 8.18. The 5% point
for xg = 14.07 and so again we accept the null hypothesis.

TABLE III (page 10)

The distribution of the minimum angle, for a simulated Poisson

a ’
(1)
process of 44 points giving rise to 64 Delaunay triangles (observed)

and for the expected values for Mile's density given by (2.7)




0=
3
Runge Obscrved - Expectod :
of a(n frequency frequency
OZ 5 52 0 97
50 ~ 10° 1 2.88 J 8.51
10o - 150 3 4.66
150 - 200 8 6.22
200 - 25 13 7.143
253 - 302 9 8.19
30 -~ 35 9 8.40
e O o
35 - 40 6 8.02 :
107 ~ 45 7 7.03 ‘
45" - 50° 4 5.19
' Ee 10.18
(o] [¢]
50 -~ 550 4 3.49 }
55 -~ 60 Q 1.20
For the simulated Poisson process E(l)= .53, From (2.7), it
can be shown that
v= E(a,_.) = 2L 1'2~ var(a,,.) = S (R (g-)2 (2.8)
(1, 17 (1) -~ 32 8 16’ * 3
Under H., &, ~ N(V fz/n) and so we have T n%|a =gl = L g)
o (1) ; (1) 7
Hence we again accept the null hypothesis.
Boots (1974) has suggested using the marginal distribution of ﬂ
a random angle from a random Delaunay triangle for verifying whether
the pattern is random. He uses Miles marginal density
f(a) = 4{(m~a) cosa + sin @] s—;—“ﬁ—g- ,0<ac<m, (2.9)

and suggests randomly selecting a sub-sample of triangles and then

choosing one angle at random from within each triangle. This pro-

cedure would of course throw away a substantial part of the




available information.

To reach a firmer conclusion concerning the null hypothesis
extensive simulations are necessary, however on the basis of the
one simulation conducted, we have no grounds to reject HO

3. VON MISES ALTERNATIVE

For any triangle there is a unigue circle, the circumcircle,
which can be drawn to pass through all three vertices of the tri-
angle. Using this fact, we can view the vertices of a particular
Delaunay triangle to be observations on the circumdisc. We now make
the following assumptions:

(1) Central Place Theory predicts equilateral Delaunay triangles.
We propose to investigate the theory by considering the shape rather
than the size of the triangles. Considering the size of the triangles
to be unimportant, each triangle is scaled so that it is circumscribed
by the unit circle, i.e. R = 1.

(11) wWith the angular observations thus formed, independence
between triangles is assumed. We have already given some justifica-

tion for this assumption in §2.

3.1. The von Mises Model

Consider 91,62,93 independent von Mises variables with common

concentration parameter K , then Bi is distributed as M(ui.K)

8 0 is

for 1i=1,2,3 and therefore the joint p.d.f. of 91, 20 95

1
£(6,,6,,6,) = e gFLCOB(6, = b, ) 4008 (8 i roOKE, 1) T

2’3 3.3
(2m) "1 _ (%)

K>0. (3.1)

If we take u' = (0,2n/3,41/3) it is obvious that as K + ® , the

triangles tend to become equilateral and therefore K can be regarded

as a measure of the degree of equilaterality.

iliitalie o b

T — ’ g - —
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3.2. von Mises Arcs

As the model stands, it cannot be directly applied to the prob-
lem as we do not know the individual marginal observations, only the
angle differences. However the data in Table I can be viewed in terms

of the 'arc lengths' 2al, 2a2, 2a3 on the unit circle. Therefore we

investigate the distribution of these arcs which we denote by

¢  + ¢ + ¢ = i e T R
Ql,éz, and 3 such that 1 3 2n, and we can write ) in

2 3

terms of 6.,8_,68_.. There are two possibilities.

e 7

(i) If 61,62,93 are 1in anticlockwise order

= - = = ¢ = )
Ql (92 Gl)mod 21, 92 (93 92)mod 2m, 3 (6l 63)mod 21
or
(ii) if 91,62,63 are in clockwise order
¢1= (el- ez)mod 21, ¢2= (92- 63)mod 2m, ®3= (63— el)mod 20Te

Consider (3.l1). By changing variables from (61,92,93) to
5 i3 ; d ;
( (62 el)mod 2m, 92, (93 ez)mod 2m ) and integrating out 92 we

arrive at the joint p.d.f. (degenerate) of @l @2,¢3. The p.d.f. of

(QI,QZ) is found to be

2_3 -1
= K K = o -

f(¢1o¢2) L (2m) Io( ¥3 [Io{ [3+2cos(@l u2+ul) + 2cos ( 5 u3+pl)
+ 2cos (¢ ~u, +u )]%)

YL
+ I (k[3+42cos(®d,~p +u_)+ 2cos (¥ _~pu_+u_)+2cos(®_ -u_+u J%}]
o R R o R B S g -

93 = 2ﬂ~§l—§2. o< ¢2$ 2n-§1. 0< le 2 (3.2)
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For equilateral triangles, we take u' = (0,21/3,41/3) and

~

hence the model becomes

£, 9)

— | 1.
2, [(2n)212(K)J l[IO{K[3+2cos(<I>l- %§o+2cos(¢2- %%)+2cos(¢3—2§ﬁ]2]

e 21 211 21l 25
K ¢ —— et o ol A -
+ IO[ [3+2cos ( lf 3)+2cos(<1>2+ 2 ) +2cos ( 3+ 3 ¥1 37 ,

o
Il

-6 _9 < ¢ < - , 0< ¢ < b .
2m 125 0 2 21 @l 0 1 21 (3.3}

Particular Cases

For K = 0, the density collapses to become -

2
$_,¢ = . < —b e < < , -
£(8, 2) 1/(2m%), o< @2 2n-¢,, 0 @1 2m (3.4)
which is what one would expect from the construction. For small K

we can approximate the density by expanding the Bessel functions and

ignoring O(K4) and higher powers of K which gives

2 3
2. -1 K
$ = - — $
£(8,,2,) = (2r) T {1- = .Z£ cosé.} ,
J_
QB = 2U—Ql—§2, 0< @25 2n_§l, o< @ls 21 . {3.5)
27 ;
For large K, Qi* ?;'+ bi where bi is so small that we can neglect

3 & . 1 % 2
O(Gi).. We have therefore Zi 6i= 0. Defining & = 3 2; 6i and
i= 1=

-1
neglecting o(K ) and smaller powers of K, (3.3) becomes




Hence (%.,% ) has a bivariate normal distribution with

1" 2
2 2

Hy= W= (2m) /3, gF 9 2/ and p = -1/2. This same result could
have been found by taking the normal approximation to the von Mises
density in (3.1l) and using the fact that the difference of two
normal variables is again normal.

We now investigate the behaviour of the distribution of A and
Qa) from this model for varying K. Since the exact form of the
densities is unknown, we turned to simulations of the model. The
method of simulation employed was that of the Rejection Procedure.

For each value of Kk, 6..,06_.,6 were simulated independently and

the corresponding valueilof21A13;nd Q(l)i were calculated for
i=l,...,10,000. The results are presented in Tables IV and V (p.l5).
Table IV shows the density of A changing from an almost mono-
tonic decreasing function at K=0, to an almost monotonic increasing
function at K=2.8. Increasing K still further, results in the
density becoming heavily concentrated around equilaterality and
being almost entirely contained in the upper half of the region.
In Table VvV a similar process is occurring, but here the mode is not
given by the maximum value of ¢ s

(1)

Identification with Miles' Density

The question arises whether the von Mises density is related to

Miles' density for some K. To this end, consider the area of a

particular triangle which is given by




o o

B s e e o

10,000

TABLE IV

simulations of A for the von Mises model

for diftferont w

Range

= = 2.8 K o= 12
of A K = k
0.0 - 0.2 2124 326 0
0,2 -0, 4 1150° 318 0
0,4 - 0.6 892 348 1)
0.6 - 0.8 802 372 3
0.8 - 1.0 767 164 2
1.0 - 1.2 609 547 8

120 = 1.4 552 612 16
A =G 593 689 43
1.6 = 1.8 525 890 146
it = 20 525 1025 382
2.0 - 2.2 502 1283 961
2= 471 1480 2427
2.4 - 2.6 408 1647 6012

TABLE V
10,000 simulations of ¢(1) for the von Miscs model for different x
Range
anee K =0 K = 2.8 v = 12
of ¢
_...-_.——1-.
(4]

o, = 103 1904 426 0
10 - 20 1442 424 0
20, - 30 1318 515 4
0 - 403 1126 656 13
0" - 50 1082 813 33
50: - 602 909 1036 123
60 - 70/ 778 1153 382
70 - 80 608 1372 506
80 - 90 507 1357 1698
06 - 100 346 1181 1504
1002-1102 202 788 2931

1107 - 120 78 279 1116
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=TT
= L = L 1 o +s1 - i —
Area sA 2|51n(61 82) SLn(e2 63)+51n(93 Gl)l,
0., = 2m (3.6 )

Area has a certain intuitive appeal in that for a given cir-
cumcircle, the triangle with the maximum area is an cquilateral
triangle. The modulus sign makes A awkward for analytical pur-
poses, so we consider instead A2 which has the same property of
being a maximum for equilateral triangles. Hence we identify
E(AZ) for both densities and it is found that Ko' the value of

K corresponding to Miles' density, should satisfy

35 3 3.2 2 3.2
—_ = = 4+ = K + K A K + = K
2 2 4A2( o) 3Al( o) 2( o) 2Al( o) (3.7)

where A (K ) = Ir(ﬁ)/IO(KO).

The solution of (3.7) gives K°= 2.20,

We now investigateAhow close this approximation is in fact.
This is done through the distribution of A and @(1) for the
Miles' density and the von Mises model. Since the exact forms of
the distributions are not known, except for Q(l) under Miles'
density, (2.7), most of the comparison is done through similation.
As before the method employed is the Rejection Procedure. The

results are shown in Figs. 2 and 3.
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As the Figures show, the two distributions agree fairly well

for both A and Q(l)' except in the lowest region where the von
Mises model predicts a much greater number of small triangles.

This particular point is discussed in the next section.

3.4. Appraisal of the von Mises Model

Under the usual circumstances, the test for randomness with the
von Mises density is Ho : K = 0 V Hl : K > 0, however this is not
applicable here. If the asymptotic approximations of Miles are
valid for n as small as 44, which the simulation described in
Table II would appear to confirm, the test becomes of the form

H : K=K VH : K >K where K = 2,20,
o 1] o o

It has to be strongly emphasized that this approach is not de-
scribed through a spatial process and in that sense, it has to be
admitted that the procedure is 'ad hoc'. For large K the model
has certain good features (e.g. sensible m.l.e.'s) and it is cer-
tainly a viable working alternative, especially, once having re-
jected the hypothesis of randomness. For K = Ko it can be thought
of as similar to Miles, but for small K, Kk < Ko,the density appears
to be meaningless in the spatial content and so can be said to be
non-spatial. This occurs due to the relatively large probability
of colinearity under the von Mises model.

Under the Miles density, equation (2.2), f(al,az) disappears
when the angles are colinear, whereas since IO(O) =" (3:3) is
still equal to a positive constant, and so is bounded away from
zero. As K increases this constant tends to zero, but for K<Ko
it is quite significant.

In an actual realisation of a spatial process for a moderate
number of points, for the three points of a Delaunay triangle to
be almost colinear, the circumdisc of the triangle would be very

large. The alternative definition of a Delaunay triangle is that

3 points form a Delaunay triangle iff their circumdisc is cmpty,
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and so given 3 points practically colinear, by the very definition
of‘a Delaunay triangle, it is most unlikely that the 3 points would
form such a triangle.

It would be nice if we could arrive at a von Mises type density
through a non-~Poisson process, but this does secem to be out of our

reach at the present time, if it is indeed at all possible. 4

4. ESTIMATION FOR THE VON MISES-~TYPE MODEL

It is reasonable to assume that the Wu's are known and for
which we take u'= (0,21/3,41/3). Consequently we need to estimate

the concentration parameter K. Two methods of estimation are

given.

4.1. Method of Moments

2 63 to be independent von Mises variables with
u'= (0,21/3,4n1/3) and common concentration parameter K, it is

Defining 61, 0

found, as in (3.7) that

3.2 2 3.2
+ 4A2(K) + 3A1(K)A2(K) + 2Al(K) ’ (4.1)

N |w

E(AZ) -

: ; ; : 2
where Ai(K) is defined in §3. We take as our estimate of E(A"),

n .
4
£@a?) =% Zx Ai ; (4.2)
l:

where Al....,An are the observed areas of the triangles. On

equating (4.1) and (4.2) we can obtain the moment estimate E of K

Unfortunately the equation can only be solved numerically.

Example
From Table I we can calculate (4.2) for the Iowa data, which

gives n-1 E; Ai = 3.,4073. Substituting into (4.2) and solving
is

numerically, it is found that K = 2.80.
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4.2. Maximum Likelihood Estimation

¢ i IR < > =
Let (Qli' 24" Q3i)' i=], n be the observed arc lengths

From (3.8) it can be easily shown that the maximum likelihood

estimate of K, Q, is given by

0 n r (Ru) + v.1 (v
s AL Z Bplaitm, ) * B B0y, (4.3)
A 3n : A A
= + K
IO(K) 1 Io(Kui) Io( vi)
- 2n 2n 211 1%
where u, = [3+2C°S(¢1f'3 ) + 2cos(@2i- 5 2cos(§3i 3)]
o 21 21, .%
= [ = ® +—) + +=— i
and v, [3+2cos( 1i+ 3 )+ 2cos( 54 3) 2cos(§>3i 3)J

By the methods of §3.2 we can find approximations to the
A
maximum likelihood equation for small and large values of K.
A : ]
For small K, by expanding the Bessel functions and neglecting

A
O(K4), (4.3) becomes

Q2= -42 Ci/i Cf (4.4)
i=1 i=1

where C.= i; cos ¢ . .
i 5& 54

A
For large K, define

n
6..2 ¢..__21' —6= 62_.' j=1,2,3: i=1‘.u.'no
Jj1 ji 3 i j= P

A -
Following §3.2, (4.3) then reduces to K = 2/8. But also we have

w“_.
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A =
K = (3J3)/(343 - 2A). (4.5)

A =
Consequently, K depends only on A for large K.

Example

Consider ¢.. = 2a. .,
J1 J1

j=1,...,63; 1i=1,2,3 where the a's
are given in Table I for the Iowa data. Substituting directly
into (4.3) and solving numerically gives Q = 2.83, which is in
good agreement with our estimate of K, K = 2.80, given by the
method of moments.

Now let us consider the large Q approximation. It is found
that A = 1,7105, Substituting this value of A into (4.5)
gives the m.l.e. of K as 2.93, which is only slightly larger

than K = 2.83.

5. ANALYSIS OF THE IOWA DATA

We can now analyze the Iowa data given in Table 1I.

5.1. Models
We first enquire whether the data could be described by a
von Mises type model with u'= (0,2n/3,4n/3). This we do through

the marginal distribution of A and We note from $4.2

Q o
that the m.l.e. of K is K = 2.8. Tables VI and VII give a

comparison between the Iowa data and the expected frequencies for

the von Mises K = 2.8 for A and 0(1), given by 10,000 simu-

lations.
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TABLE VI
Comparison of A for tho obscrved lowa data and thoso valuos

expected from 10,000 simulations for tho von Mises modol with

K = 2.8 (El) and for Miles' densitry (E,) 1
Range Observed E k,
of A frequency ¥ #
0.0 - 0.6 1 6.24 6.42
0.6 - 1.0 7 5.26 7.93
1 3 1.0 - 1.4 14 7.31 10.11 3
1.4 - 1.8 7 9.95 11.44
1.8 - 2.2 13 14,54 12,87
2.2 -2.6 21 19.70 14.23

TABLE VII

Comparison of ¢ values between the observed lowa data, thoso

(1)
5 4 values expectoed for the von Misces modol with v = 2.8 (Bl) givon

by 10,000 simulations and thoso values expected for Miles'

donsity (Ez)

Range Observed E ' E

of ¢ frequency s *

» (1) ;
oo - 200 o 5.35 3.80 |
207 - 407 8 7.37 10.71 ]
400 - 600 14 11.65 15.37 \
600 - 800 16 15.90 16 .17
wo - 1000 18 15.99 12,32

100 - 170 7 6.71 1.62
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: 2 :
Using a ¥ goodness of fit test for A and and

¢(l)'
testing against ¥2(5%) = 9.49 and xi(l%) = 13.28 in both
cases, it was found for A, xz = 12.22 and for Q(l)' x%= 6.13.
Hence we just reject the fit for A at the 5% level, but accept
the fit of the model for 6(1).

The final columns in Tables VI and VII give the corresponding
frequencies under Miles' model from simulation. Applying the
test for Miles' density produces the mildly surprising result that
we would accept the fit of this distribution to the Iowa data.
For A we have x2 = 10.46 against X§(5%) = 11.07 and for Q(l)'
x2= 6.87 against x§(5%) = 7.81. The best procedure would have
been to look into the bivariate distribution of (al,uz), but the
sample size of n = 63 is anyhow too small to draw clear-cut
conclusions. However, as we have seen that for Ko= 2020 the
von Mises type model is adequate. We will study the problem more

fully from this angle in the next section.

5.2. ¢Central Place Theory

We wish to investigate whether the Delaunay triangles of the
Iowa data can be regarded as having arisen as the result of a
Poisson process in the plane or whether they occurred through the
action of a more regular force. Under the von Mises-type model
of §3, this problem can be looked upon as testing H = K = K

o}

against Hy ¢ & > K where ' = (0,21/3,4n/3). 1If A is the

likelihood ratio for the problem, it is found that

n 1
-2 log A = 6n log (K_/K) + 212; log (L1 (Kju,) + I_(Kv,)1/

Lz (kgu) + 1 (K v,
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where Ko= 2.20, Kl= 2.83 and u, and v, are given by (4.3).

Substituting the values from Table I gives -2 log A = 4.08.

o
With the evidence before us, there seems justifiable grounds at

xi(s%) = 3.84 and hence we reject K = K at the 5% level.

the 5% level to suppose that the Iowa data is a result of a pro-
cess that is more regular than the Poisson and hence there is
some evidence that Central Place Theory holds for this particular
region.
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ABSTRACT
Central Place Theory predicts a regular spatial pattern in

the plane and we observe that the Delaunay triangles will be
equilateral under the theory. However, when the pattern is
'random', Miles (1970) has given the asymptotic p.d.f. of the
interior angles of a random Delaunay triangle. We propose a
von Mises-type model with a concentration parameter K; the

larger the value of K , the closer we are to the Central Place

TNGANE e LR SLp——
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Theory. We show that the model can be approximated to the Miles'
density for some value of K. We provide the moment and maximum
likelihood estimators of K, and it is recognized that the areas
of the Delaunay triangles play an important role. We construct

a test of departure from the random pattern with the alternative
of Central Place Theory. As a numerical example, we analyze 44
Central Places in Iowa where we find some evidence for the valid-

ity of Central Place Theory in that particular region.

RESUME

La Théorie de la Position Centrale envisage une répartition

réguliere des implantations urbaines dans la plaine. Dans cette
théorie on s'attend a ce que les triangles de Delaunay de la
répartition soient équilatéraux. Cependant, quand la repartition
est "au hasard", Miles (1970) a donné la distribution asymptotique
pour les angles intérieurs d'un triangle de Delaunay pris au
hasard. On nous propose un modele de von Mises avec un paramétre
de concentration "K". La validite de la théorie de la position
centrale augmente avec "K". On démontre que l'on peut donner une
approximation du modele par la densite de Miles pour uxe valeur
donneée de “K". On trouve des evaluations de "K" en utilisant les
moments et l'équation du maximum de vraisemblance. L'importance
des surfaces des triangles de Delaunay est reconnue, et une
expérience entre la "priseau hasard" et la theorie de la position
centrale est au cours de dévelopement. A titre d'exemple
numérique, on analyse 44 positions centrales dans 1l'Iowa ou l'on

trouve des preuves de la validite de la theorie dans cette région

3 o S
particuliere.
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